Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.974
Filtrar
1.
Neuron ; 112(8): 1202-1204, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636453

RESUMO

Insomnia is an important comorbidity of chronic pain. In this issue of Neuron, Li et al. report that chronic-pain-induced insomnia is mediated by the pyramidal neurons in the anterior cingulate cortex and their dopaminergic projections to the dorsal medial striatum.


Assuntos
Dor Crônica , Distúrbios do Início e da Manutenção do Sono , Humanos , Giro do Cíngulo/fisiologia , Corpo Estriado , Células Piramidais , Neostriado
2.
Sci Rep ; 14(1): 8605, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615065

RESUMO

Adolescence is characterized by increased impulsive and risk-taking behaviors. To better understand the neural networks that subserves impulsivity in adolescents, we used a reward-guided behavioral model that quantifies age differences in impulsive actions in adult and adolescent rats of both sexes. Using chemogenetics, we identified orbitofrontal cortex (OFC) projections to the dorsomedial striatum (DMS) as a critical pathway for age-related execution of impulsive actions. Simultaneous recording of single units and local field potentials in the OFC and DMS during task performance revealed an overall muted response in adolescents during impulsive actions as well as age-specific differences in theta power and OFC-DMS functional connectivity. Collectively, these data reveal that the OFC-DMS pathway is critical for age-differences in reward-guided impulsive actions and provide a network mechanism to enhance our understanding of how adolescent and adult brains coordinate behavioral inhibition.


Assuntos
Corpo Estriado , Neostriado , Feminino , Masculino , Animais , Ratos , Comportamento Impulsivo , Encéfalo , Procedimentos Clínicos
3.
J Neurochem ; 168(4): e4, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607972

RESUMO

Acetylcholine release from striatal cholinergic interneurons is controlled differently depending on the firing pattern (Published in JNC 167.1 issue) https://onlinelibrary.wiley.com/doi/10.1111/jnc.15950.


Assuntos
Acetilcolina , Corpo Estriado , Neostriado , Interneurônios , Colinérgicos/farmacologia
4.
J Comp Neurol ; 532(4): e25611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625816

RESUMO

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Assuntos
Encéfalo , Columbidae , Animais , Columbidae/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado , Neostriado/fisiologia , Mamíferos
5.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526916

RESUMO

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.


Assuntos
Dopamina , Receptores de Dopamina D1 , Camundongos , Animais , Receptores de Dopamina D1/metabolismo , Corpo Estriado/fisiologia , Neostriado/fisiologia , Marcha , Camundongos Transgênicos
6.
J Alzheimers Dis ; 98(4): 1301-1317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517789

RESUMO

Background: Mild cognitive impairment (MCI), the prodromal stage of Alzheimer's disease, has two distinct subtypes: stable MCI (sMCI) and progressive MCI (pMCI). Early identification of the two subtypes has important clinical significance. Objective: We aimed to compare the cortico-striatal functional connectivity (FC) differences between the two subtypes of MCI and enhance the accuracy of differential diagnosis between sMCI and pMCI. Methods: We collected resting-state fMRI data from 31 pMCI patients, 41 sMCI patients, and 81 healthy controls. We chose six pairs of seed regions, including the ventral striatum inferior, ventral striatum superior, dorsal-caudal putamen, dorsal-rostral putamen, dorsal caudate, and ventral-rostral putamen and analyzed the differences in cortico-striatal FC among the three groups, additionally, the relationship between the altered FC within the MCI subtypes and cognitive function was examined. Results: Compared to sMCI, the pMCI patients exhibited decreased FC between the left dorsal-rostral putamen and right middle temporal gyrus, the right dorsal caudate and right inferior temporal gyrus, and the left dorsal-rostral putamen and left superior frontal gyrus. Additionally, the altered FC between the right inferior temporal gyrus and right putamen was significantly associated with episodic memory and executive function. Conclusions: Our study revealed common and distinct cortico-striatal FC changes in sMCIs and pMCI across different seeds; these changes were associated with cognitive function. These findings can help us understand the underlying pathophysiological mechanisms of MCI and distinguish pMCI and sMCI in the early stage potentially.


Assuntos
Disfunção Cognitiva , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Neostriado , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
7.
J Neuropathol Exp Neurol ; 83(5): 294-306, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38553027

RESUMO

Two aspects of the neuropathology of early Huntington disease (HD) are examined. Neurons of the neostriatum are counted to determine relative loss in striosomes versus matrix at early stages, including for the first time in preclinical cases. An immunohistochemical procedure is described that tentatively distinguishes early HD from HD mimic disorders in postmortem brains. Counts of striatal projection neurons (SPNs) in striosomes defined by calbindin immunohistochemistry versus counts in the surrounding matrix are reported for 8 Vonsattel grade 0 (including 5 premanifest), 8 grade 1, 2 grade 2 HD, and for 8 control postmortem brains. Mean counts of striosome and matrix SPNs were significantly lower in premanifest grade 0 versus controls, with striosome counts significantly lower than matrix. In 8 grade 1 and 2 grade 2 brains, no striosomes with higher SPN counts than in the surrounding matrix were observed. Comparing dorsal versus ventral neostriatum, SPNs in dorsal striosomes and matrix declined more than ventral, making clear the importance of the dorsoventral site of tissue selection for research studies. A characteristic pattern of expanded polyglutamine-immunopositive inclusions was seen in all HD cases. Inclusions were always present in some SPNs and some pontine nucleus neurons and were absent in Purkinje cells, which showed no obvious cell loss.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/patologia , Corpo Estriado/patologia , Neostriado/patologia , Neurônios/patologia , Calbindinas
8.
Nat Commun ; 15(1): 1916, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429266

RESUMO

The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.


Assuntos
Corpo Estriado , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Corpo Estriado/fisiologia , Neostriado , Gânglios da Base , Neurônios Dopaminérgicos
9.
Nat Neurosci ; 27(4): 737-746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321294

RESUMO

Animals make predictions to guide their behavior and update those predictions through experience. Transient increases in dopamine (DA) are thought to be critical signals for updating predictions. However, it is unclear how this mechanism handles a wide range of behavioral timescales-from seconds or less (for example, if singing a song) to potentially hours or more (for example, if hunting for food). Here we report that DA transients in distinct rat striatal subregions convey prediction errors based on distinct time horizons. DA dynamics systematically accelerated from ventral to dorsomedial to dorsolateral striatum, in the tempo of spontaneous fluctuations, the temporal integration of prior rewards and the discounting of future rewards. This spectrum of timescales for evaluative computations can help achieve efficient learning and adaptive motivation for a broad range of behaviors.


Assuntos
Corpo Estriado , Dopamina , Ratos , Animais , Neostriado , Aprendizagem , Recompensa
10.
Cell Rep ; 43(2): 113748, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38324450

RESUMO

Animals are known to exhibit innate and learned forms of defensive behaviors, but it is unclear whether animals can escape through methods other than these forms. In this study, we develop the delayed escape task, in which male rats temporarily hold the information required for future escape, and we demonstrate that this task, in which the subject extrapolates from past experience without direct experience of its behavioral outcome, does not fall into either of the two forms of behavior. During the holding period, a subset of neurons in the rostral-to-striatum claustrum (rsCla), only when pooled together, sustain enhanced population activity without ongoing sensory stimuli. Transient inhibition of rsCla neurons during the initial part of the holding period produces prolonged inhibition of the enhanced activity. The transient inhibition also attenuates the delayed escape behavior. Our data suggest that the rsCla activity bridges escape-inducing stimuli to the delayed onset of escape.


Assuntos
Claustrum , Masculino , Animais , Ratos , Corpo Estriado , Aprendizagem , Neostriado , Neurônios
12.
Cell Rep ; 43(3): 113828, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386550

RESUMO

The acquisition and performance of goal-directed actions has long been argued to depend on the integration of glutamatergic inputs to the posterior dorsomedial striatum (pDMS) under the modulatory influence of dopamine. Nevertheless, relatively little is known about the dynamics of striatal dopamine during goal-directed actions. To investigate this, we chronically recorded dopamine release in the pDMS as rats acquired two actions for distinct outcomes as these action-outcome associations were incremented and then subsequently degraded or reversed. We found that bilateral dopamine release scaled with action value, whereas the lateralized dopamine signal, i.e., the difference in dopamine release ipsilaterally and contralaterally to the direction of the goal-directed action, reflected the strength of the action-outcome association independently of changes in movement. Our results establish, therefore, that striatal dopamine activity during goal-directed action reflects both bilateral moment-to-moment changes in action value and the long-term action-outcome association.


Assuntos
Condicionamento Operante , Dopamina , Ratos , Animais , Dopamina/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo
13.
J Huntingtons Dis ; 13(1): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393920

RESUMO

Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.


Assuntos
Doença de Huntington , Animais , Ovinos/genética , Humanos , Criança , Pré-Escolar , Doença de Huntington/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Mutação , Idade de Início , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Modelos Animais de Doenças
14.
J Neurochem ; 168(3): 251-268, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308566

RESUMO

The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.


Assuntos
Dopamina , Cauda , Ratos , Animais , Corpo Estriado , Neostriado , Antagonistas de Dopamina/farmacologia
15.
Nat Commun ; 15(1): 19, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168089

RESUMO

Actions are biased by the outcomes they can produce: Humans are more likely to show action under reward prospect, but hold back under punishment prospect. Such motivational biases derive not only from biased response selection, but also from biased learning: humans tend to attribute rewards to their own actions, but are reluctant to attribute punishments to having held back. The neural origin of these biases is unclear. Specifically, it remains open whether motivational biases arise primarily from the architecture of subcortical regions or also reflect cortical influences, the latter being typically associated with increased behavioral flexibility and control beyond stereotyped behaviors. Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased prediction errors occurred in cortical regions (dorsal anterior and posterior cingulate cortices) before subcortical regions (striatum). These results highlight that biased learning is not a mere feature of the basal ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated mechanism.


Assuntos
Corpo Estriado , Aprendizagem , Humanos , Aprendizagem/fisiologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiologia , Neostriado , Recompensa , Imageamento por Ressonância Magnética , Tomada de Decisões/fisiologia , Viés
16.
Neuron ; 112(6): 909-923.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242115

RESUMO

Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.


Assuntos
Encéfalo , Dopamina , Camundongos , Animais , Encéfalo/fisiologia , Corpo Estriado , Neostriado , Optogenética/métodos
18.
Nat Commun ; 15(1): 219, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191518

RESUMO

Compulsive behaviors are observed in a range of psychiatric disorders, however the neural substrates underlying the behaviors are not clearly defined. Here we show that the basolateral amygdala-dorsomedial striatum (BLA-DMS) circuit activation leads to the manifestation of compulsive-like behaviors. We revealed that the BLA neurons projecting to the DMS, mainly onto dopamine D1 receptor-expressing neurons, largely overlap with the neuronal population that responds to aversive predator stress, a widely used anxiogenic stressor. Specific optogenetic activation of the BLA-DMS circuit induced a strong anxiety response followed by compulsive grooming. Furthermore, we developed a mouse model for compulsivity displaying a wide spectrum of compulsive-like behaviors by chronically activating the BLA-DMS circuit. In these mice, persistent molecular changes at the BLA-DMS synapses observed were causally related to the compulsive-like phenotypes. Together, our study demonstrates the involvement of the BLA-DMS circuit in the emergence of enduring compulsive-like behaviors via its persistent synaptic changes.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Animais , Camundongos , Corpo Estriado , Neostriado , Comportamento Compulsivo , Sinapses
19.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203752

RESUMO

Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.


Assuntos
Astrócitos , Citratos , Endocanabinoides , Feminino , Masculino , Animais , Ratos , Endocanabinoides/farmacologia , Corpo Estriado , Neostriado
20.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164559

RESUMO

Striatal spiny projection neurons are hyperpolarized-at-rest (HaR) and driven to action potential threshold by a small number of powerful inputs-an input-output configuration that is detrimental to response reliability. Because the striatum is important for habitual behaviors and goal-directed learning, we conducted a microendoscopic imaging in freely moving mice that express a genetically encoded Ca2+ indicator sparsely in striatal HaR neurons to evaluate their response reliability during self-initiated movements and operant conditioning. The sparse expression was critical for longitudinal studies of response reliability, and for studying correlations among HaR neurons while minimizing spurious correlations arising from contamination by the background signal. We found that HaR neurons are recruited dynamically into action representation, with distinct neuronal subsets being engaged in a moment-by-moment fashion. While individual neurons respond with little reliability, the population response remained stable across days. Moreover, we found evidence for the temporal coupling between neuronal subsets during conditioned (but not innate) behaviors.


Assuntos
Corpo Estriado , Neurônios , Animais , Camundongos , Reprodutibilidade dos Testes , Corpo Estriado/fisiologia , Neurônios/fisiologia , Neostriado/fisiologia , Interneurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...